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Thermodynamics has a very large number of variables, spanning both Latin and Greek
characters, which can often become confusing. Herein I will lay out each variable, it’s units, and a
brief definition of it’s function. Note: Equations marked with a star denote a DeHoff equation,
such equations do not hold across phase changes, but are very useful in the DeHoff method. This
excludes W ∗, which is the path dependent non-mechanical work, which is often neglected in
practice. Some basic quantities are not defined herein, but are required for all given definitions:
temperature, pressure, energy, and volume.
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1 Variables

1. Internal Energy
Symbol: U, E [Units: Energy]
Equations:

• dU = δQ+ δW + δW ∗

• dU = TdS − PdV + δW ∗

• *dU = (CP − PV αV )dT − V (TαV − PβT )dP

Internal energy is used to characterize a system as it moved between two states. It includes
the kinetic energy and potential energy of a system or object, and also includes the energy
held in the chemical bonds of the material in question. This is useful if one need to convert
kinetic or potential energy into heat (q, TdS) or a change in volume (dV) under a given
pressure. A negative value indicates that some work or heat is leaving the system, while a
positive implies that work or heat is entering the system.

2. Enthalpy
Symbol: H [Units: Energy]
Equations:

• H ≡ U + PV

• dH = TdS − PdV
• *dH = CPdTV (1− TαV )dP

Enthalpy relates the energy stored in mass or objects. This can be used to track energy
coming into a system by the first law, or to quantify the heat of reaction given a chemical
reaction. The most frequently given values are enthalpy of formation for a given compound,
which is defined as zero for pure and elemental compounds (like diatomic oxygen, or
graphitic carbon).

3. Entropy
Symbol: S [Units: Energy]
Equations:

• dS ≥ δQ
T

• dS = dH
T (dP = 0)

• *dS = Cp

T dT − V αV dP

Entropy can be described as the energy of disorder, and always increases. Similarly to
enthalpy, entropy can be tracked through phase and temperature changes, to relate the
energy of a system. Most calculations involving entropy must be assumed to be completely
reversible, in order to make the above inequality an exact equality.
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4. Gibbs Energy
Symbol: G [Units: Energy]
Equations:

• G ≡ H − TS
• dG = V dP − SdT
• ∆G = ∆G◦ +RTln(Ja)

Gibbs energy relates the amount of non-mechanical work a system is capable of doing at
constant temperature and pressure. For a reaction, ∆G is the quantity of interest. If it is
positive, the reaction will only run in the direction opposite of how it is written, if it is zero
you have equilibrium, and if it is negative, the reaction will occur spontaneously. The third
equation is the one applied to a reaction at a given temperature, for a given reaction
quotient.

5. Helmholtz Energy
Symbol: G [Units: Energy]
Equations:

• F = U − TS
• dF = −SdT − PdV
• *dF = −(S − PV αV )dT + PV βTdP

Helmholtz energy quantifies the amount of mechanical work one is able to extract from a
system.

6. Electromotive Force
Symbol: E [Units: Volts]
Equations:

• E = E◦ − RT
zF ln(Ja)

The electromotive force is the voltage provided by an electrochemical reaction. The
similarity to Gibbs energy is not coincidental, as electrochemistry is treated simply as a an
extension of thermochemistry.

7. Heat Capacity
Symbol: Cp [Units: Energy Mass−1 Temperature−1] (constant pressure)
Symbol: Cv [Units: Energy Mass−1 Temperature−1] (constant volume)
Equations:

• Cp =
(
∂H
∂T

)
P

• Cv =
(
∂U
∂T

)
V
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The heat capacity terms express how much energy it takes to change the temperature of a
given amount of material. This becomes useful in the DeHoff method, as well as in first law
problems where the temperature of a specific material is of interest (a boiler, cooler,
furnace, etc.).

8. Coefficient of Thermal Expansion
Symbol: αv [Units: Temperature−1]
Equations:

• 1
v

(
∂V
∂T

)
P

The coefficient of thermal expansion relates how volume changes as temperature changes at
constant pressure. Similarly, αl denotes the linear analogue. This value is useful in practical
applications as well as the DeHoff method.

9. Coefficient of Compressibility
Symbol: βt [Units: Pressure−1]
Equations:

• βt = −1
v

(
∂V
∂P

)
T

The coefficient of compressibility relates how volume changes as pressure changes at constant
temperature. This value is useful in practical applications as well as the DeHoff method.

10. Chemical Potential
Symbol: mui [Units: Energy Mass−1]
Equations:

• µi =
(
∂U
∂ni

)
S,V,nj 6=i

The chemical potential relates how a thermodynamic parameter changes when one changes
the number of moles of species i present, but holds all other relevant quantities, including
moles of other species, constant.

11. Activity and Related Symbols
Activity of i [Units: None]
Symbol: ai Equations:

• ai = Pi
P ◦i

• ai = Xiγi

The activity of a component in a system relates it’s relative presence. The first formula
given has the vapor pressure present, divided by the partial pressure at standard state. If
working from the Raoultian standard state (most common, assume unless otherwise
indicated), P 0

i is the vapor pressure of pure i at the temperature of interest.
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Mole Fraction of i [Units: None]
Symbol: Xi

• Xi = ni
ni+Σnother

The mole fraction of a given element is useful in calculating it’s activity, as well as for
tackling problems involving solutions and mixtures.

Activity Coefficient of i [Units: None]
Symbol: γi

• ai = γiXi

The activity coefficient accounts for non-ideal behavior in mixtures. A value less than one
causes what is referred to as ”negative behavior”, while a value greater than one causes
”positive behavior”. These imply a great willingness to mix to reach lower energy (negative)
and a repulsion that prevents mixing (positive). If γi = 1 then the solution is ideal, and the
activity of a component is exactly the mole fraction of that component.

Henry’s Law Value of i [Units: None]
Symbol: γ◦i
The Henry’s Law value is the value that γ approaches as the fraction component i
approaches zero. If one were to plot activity of i against mole fraction of i, it would, for
negative behavior, look like a tilted ”S”. The linear portion near the bottom is referred to
as the Henry’s Law region, and if one were to extend the line all the way to a mole fraction i
of 1, the height would be γ◦i . This line is the Henry’s Law line, and is important in the
context of changing standard states.

2 Notes on Notation

The numerous variables are often presented with myriad super scripts, subscripts, over-lines, and
underlines. Each of these effectively modifies the exact meaning of the variable. While I will
present these examples in terms of Gibbs energy, most are applied to the energy terms in
thermodynamics (U, S, H, G, F).

Intensive
Denoted by: Underline, G
Meaning: When one wishes to express a thermodynamic relation without a mass term (moles,
kilograms, etc.) one can make the terms intensive by underlining them. This simplifies
expressions like the ideal gas law. Expressed with extensive variables (the opposite of intensive),
it looks like this: PV = nRT . Changing to intensive: PV = RT . The term representing n moles
was moved to the other side, P

n = P . It only makes sense to undertake this change with variables
that realistically are proportional to mass, generally volume and the energy variables. Note that
one can make the quotient of two such variables intensive without issue nor change, as it would
divide out. Both heat capacity variables are innately per mass (intensive), and as such are never
underlined. If entropy or enthalpy are found in terms of heat capacity, they too are intensive.
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Standard State
Denoted by: Superscript zero, G0

Meaning: Standard state values come up most often during chemical reactions as a baseline from
which to evaluate how a reaction will occur at non-standard conditions. It is important to
remember that the superscript zero does not mean standard state when applied to γ. This
modifier is most often applied to energy terms, but also E , the electromotive force of an
electrochemical cell, with much the same interpretation.

Partial Molar Quantity
Denoted by: Over-line, Gi
Meaning: Partial molar quantities relate the variable in terms of a single species or component.
This comes up most often in the context of mixtures, mixing processes, and alloys. In addition, a
superscript rel (Greli ) means relative partial molar quantity, meaning it is referenced from
standard state (which ever one you happen to be working in, but again, most often Raoultian).
Partial molar quantities can be expressed as (using internal energy as an example):

U i =
(
∂U

∂ni

)
S,V,nj 6=i

Note that volume and entropy are held constant, as they are the variables internal energy is a
direct function of, however a partial molar quantity is ideally with everything held constant save
for the change in moles of the species in question. In a mixture, to find the total value, simply
multiply each partial molar quantity by the number of moles of the appropriate species.

Path Dependant Change or Differential
Denoted by: Lowercase delta or ”del”, δQ
Meaning: Unlike most of the other modifiers, this applies only to heat and work terms in the
context of the first law, as they are not state variables. A state variable is one that does not
depend on how the material in question reached the state it is in, such as entropy, enthalpy,
internal energy, volume, temperature, and so forth. Only by imposing conditions can we convert
these path dependent variables into more workable state variables. For example, by imposing the
restriction that the process is entirely reversible, we can state that δQ = TdS. It is this freedom
that allows us to frequently neglect δW ∗, the non-mechanical work of a system by simply
imposing the restriction that we take a path with none.
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