Extracting Basic Information
 from a Paraxial Ray Trace

Alexander Miles
AlexanderAshtonMiles@gmail.com

Written: November 24, 2008
Last edit: December 9, 2008

Paraxial ray tracing is used to follow a ray through an optical system consisting of a number of surfaces, and the spaces that they bound. Limited to paraxial rays, and first order optics, this method carries inside it the assumption that $\sin x \approx x$ for x in radians. This is the first term from the power series for sine, and is accurate within about 10% until about 10°. Ray tracing of this type is governed by a handful of equations. The primes used in these equations indicated the 'next' index (n), height (y), or angle (u). The power equation defines the optical power (commonly in diopters, but can be left in any inverse length unit as long as everything else is kept in those units) for a given surface in terms of the index in front of the surface (n), behind the surface (n^{\prime}), and the radius of that surface (R). The refraction equation similarly relates the angle inside one space to the angle and height the ray meets that surface bounding that space at. Lastly the transfer equation relates how the ray height changes as it propagates over some reduced thickness (t / n), given a height on the first surface (y), the reduced distance traveled ($\mathrm{t}^{\prime} / \mathrm{n}^{\prime}$) and the angle relative the optical axis ($n^{\prime} u^{\prime}$) this equation yields the height at the next surface (y^{\prime}).

$$
\begin{array}{lc}
\text { Power Equation } & \phi=\frac{n^{\prime}-n}{R} \\
\text { Refraction Equation } & n^{\prime} u^{\prime}=n u-y \phi \\
\text { Transfer Equation } & y^{\prime}=y+\left(\frac{t^{\prime}}{n^{\prime}}\right)\left(n^{\prime} u^{\prime}\right)
\end{array}
$$

The reduction of the sine functions by first order approximation means that both the refraction and transfer equations are linear, which allows one to easily fill in a 'brick-chart' style ray tracing sheet fairly quickly, and also becomes useful when it is necessary to scale rays. In this paper I will assume that basic knowledge of the applying these ray tracing equations, and the use of the chart, is understood, and will only detail the explicit extraction of important information.

Element	Method
Effective Focal Length (efl)	Divide the true marginal ray height at the first surface, by the negative of the marginal ray angle in image space.
Entrance Pupil Location	Divide the chief ray height at the first surface by the chief ray angle at that surface. Distance is relative to first surface.
Entrance Pupil Diameter	The full diameter is given by twice the Lagrange invariant, divided by the chief ray angle in object space.
Exit Pupil Location $\quad \frac{2 \text { ※ }}{n \bar{u}_{o b j}}$	

surface, and multiply by negative one. Distance is relative to last surface.\end{array}\right|\)

