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1 3D Helmholtz Equation

A Green’s Function for the 3D Helmholtz equation must satisfy

∇2G(r, r0) + k2G(r, r0) = δ(r, r0)

By Fourier transforming both sides of this equation, we can show that we may take the Green’s function
to have the form

G(r, r0) = g(|r− r0|)

and that

g(r) = 4π

∫ ∞
0

sinc(2rρ)

k2 − 4π2ρ2
ρ2dρ

First we take the Fourier transform of both sides:

F
(
∇2G(r, r0) + k2G(r, r0)

)
= e2πir0ρ (1)

(2πiρ)2G(ρ, ρ0) + k2G(ρ, ρ0) = e2πir0ρ (2)

G(ρ, ρ0)
[
(2πiρ)2 + k2

]
= e−2πir0ρ (3)

G(ρ, ρ0) =
e−2πir0ρ

(2πiρ)2 + k2
(4)

G(r, r0) =

∫ π

0

∫ 2π

0

∫ ∞
0

e−2πir0ρ

(2πiρ)2 + k2
e2πirρ cos θρ2 sin θdρdθdφ (5)

G(r, r0) = 2π

∫ π

0

∫ ∞
0

e2πi|r−r0|ρ cos θ

k2 − 4π2ρ2
ρ2 sin θdρdθ (6)

u = − cos θ du = sin θdθ (7)

G(r, r0) = 2π

∫ 1

−1

∫ ∞
0

e−2πi|r−r0|ρu

k2 − 4π2ρ2
ρ2dρdu (8)

G(r, r0) = 2π

∫ ∞
0

ρ2

k2 − 4π2ρ2

∫ 1

−1
e−2πi|r−r0|ρududρ (9)

G(r, r0) = 2π

∫ ∞
0

ρ2

k2 − 4π2ρ2

[
1

−2πi|r − r0|ρ
(e−2πi|r−r0|ρ − e2πi|r−r0|ρ)

]
dρ (10)

G(r, r0) = 2π

∫ ∞
0

ρ2

k2 − 4π2ρ2

[
2i sin(−2π|r − r0|ρ)

−2πi|r − r0|ρ

]
dρ (11)
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G(r, r0) = 2π

∫ ∞
0

ρ2

k2 − 4π2ρ2

[
sin(−2π|r − r0|ρ)

−π|r − r0|ρ

]
dρ (12)

G(r, r0) = 4π

∫ ∞
0

ρ2

k2 − 4π2ρ2
sinc(−2π|r − r0|ρ)dρ (13)

This means that little g has the expected form:

g(r) = 4π

∫ ∞
0

sinc(2rρ)

k2 − 4π2ρ2
ρ2dρ (14)

However, this integral passes through a singularity of the integrand. If we use the Cauchy principal value
to deal with this problem, we use contour integration we find that the solution is proportional to a spherical
wave from a monochromatic point source.

Re

[
eikr

r

]

g(r) = 4π

∫ ∞
0

sinc(2rρ)

k2 − 4π2ρ2
ρ2dρ = 4π

∫ ∞
0

sin(2πrρ)

(2πrρ)(k2 − 4π2ρ2)
ρ2dρ (15)

g(r) = 2

∫ ∞
0

sin(2πrρ)

r(k2 − 4π2ρ2)
ρdρ (16)

We recognize that sinc(x) is an even function, so we can get the same result by integrating over infinite
limits and halving the result.

g(r) =

∫ ∞
−∞

sin(2πrρ)

r(k2 − 4π2ρ2)
ρdρ (17)

g(r) = Im

{∫ ∞
−∞

e2πirρ

r(k2 − 4π2ρ2)
ρdρ

}
(18)

Now let us focus on solving the integral, then we will take the imaginary part at the end. We recognize
two poles at ρ = ± k

2π . We must cleverly re-phrase the denominator in order to clearly cancel with our
additional factor.

Resk/2π =

(
ρ− k

2π

)
e2πirρ

−4π2r(ρ− k
2π )(ρ+ k

2π )
ρ

∣∣∣∣∣
ρ=k/(2π)

=
e2πirρ

−4π2r(ρ+ k
2π )

ρ

∣∣∣∣∣
ρ=k/(2π)

=
eirk

−4π2r( k
2π + k

2π )

k

2π

=
eirk

−4πrk

k

2π

=
eirk

−8π2r

(19)
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Res−k/2π =

(
ρ+

k

2π

)
e2πirρ

−4π2r(ρ− k
2π )(ρ+ k

2π )
ρ

∣∣∣∣∣
ρ=−k/(2π)

=
e2πirρ

−4π2r(ρ− k
2π )

ρ

∣∣∣∣∣
ρ=−k/(2π)

=
e−irk

−4π2r(−k2π −
k
2π )

−k
2π

=
e−irk

4πrk

−k
2π

=
e−irk

−8π2r

(20)

Now we can utilize the residues, recognizing that since both lie on the line of integration, they have half
the influence: ∫ ∞

−∞

e2πirρ

r(k2 − 4π2ρ2)
ρdρ = 2πi

∑
i

Residuei (21)

2πi
∑
i

Residuei = 2πi

(
1

2

eirk

−8π2r
+

1

2

e−irk

−8π2r

)
= i

(
eirk

−8πr
+
e−irk

−8πr

)
(22)

2πi
∑
i

Residuei =
i

−8πr

(
eirk + e−irk

)
=

i

−8πr
(cos(kr) + i sin(kr) + cos(−kr) + i sin(−kr)) (23)

2πi
∑
i

Residuei =
i

−8πr
(cos(kr) + i sin(kr) + cos(kr)− i sin(kr)) (24)

2πi
∑
i

Residuei =
i

−8πr
(cos(kr) + cos(kr)) =

i cos(kr)

−4πr
(25)

Finally, we take the imaginary part in order to solve our original integral:

g(r) = 4π

∫ ∞
0

sinc(2rρ)

k2 − 4π2ρ2
ρ2dρ =

cos(kr)

−4πr
(26)

g(r) =
cos(kr)

−4πr
(27)

If we go ahead and plot the result of our operator acting upon this function, we do indeed find a delta
function!

2 3D Wave Equation

A Green’s function for the 3D wave equation must satisfy

∇2G(r, t, r0, t0)− 1

c2
∂2

∂t2
G(r, t, r0, t0) = δ(r, r0)δ(t− t0)

We utilize the space-time Fourier transform, defined as:

F (ρ, ω) =

∫
R3

∫ ∞
−∞

f(r, t)e−2πi(r·ρ−ωt)dtd3r
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Using this Fourier transform we can show that we may assume the Greens’ function has the form:

G(r, t, r0, t0) = g(|r− r0|, t− t0)

Instead of performing the whole Fourier transform at once, we instead perform just the time-dependent
transform first.

Ft
(
∇2G(r, t, r0, t0)− 1

c2
∂2

∂t2
G(r, t, r0, t0)

)
= δ(r, r0)e2πit0ω (28)

∇2G(r, t, r0, t0)− 1

c2
(−4π2t20)G(r, t, r0, t0) = δ(r, r0)e2πit0ω (29)

(
∇2 +

4π2ω2

c2

)
G(r, t, r0, t0) = δ(r, r0)e2πit0ω (30)

If we make the substitution k = 2πω
c we see that the wave equation is very similar to the Helmholtz

equation we worked with in the previous section.(
∇2 + k2

)
G(r, t, r0, t0) = δ(r, r0)e2πi(t−t0)ω (31)

Because of this similarity, we can utilize the solution all the way up to the point where we are inverse-
transforming through the ω variable in the next portion of the question. We can use contour integration to
show that g(r, t) is a linear combination of an incoming wave

c

r
δ(r + ct)

and an outgoing wave
c

r
δ(r − ct)

g(r) = 4π

∫ ∞
−∞

∫ ∞
0

sinc(2rρ)

k2 − 4π2ρ2
ρ2e2πit0ωdρdω (32)

g(r) =

∫ ∞
−∞

− cos(kr)

4πr
e2πit0ωdω (33)

g(r) =

∫ ∞
−∞

− cos(kr)

4πr
e2πit0ωdω (34)

g(r) =
−1

4πr

∫ ∞
−∞

1

2

(
eikr + e−ikr

)
e2πit0ωdω (35)
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g(r) =
−1

8πr

(∫ ∞
−∞

eikre2πit0ωdω +

∫ ∞
−∞

e−ikre2πit0ωdω

)
(36)

g(r) =
−1

8πr

(∫ ∞
−∞

e
2πiωr
c e2πit0ωdω +

∫ ∞
−∞

e
−2πiωr

c e2πit0ωdω

)
(37)

g(r) =
−1

8πr

(∫ ∞
−∞

e2πiω(
r
c+t0)dω +

∫ ∞
−∞

e−2πiω(
r
c−t0)dω

)
(38)

g(r) =
−1

4πr

[
δ
(r
c

+ t0

)
+ δ

(r
c
− t0

)]
(39)

G(r) =
−1

4πr

[
δ

(
|r− r0|

c
+ (t− t0)

)
+ δ

(
|r− r0|

c
− (t− t0)

)]
(40)

To get this to resemble the form alluded to in the question, we must multiply by a form of one, and
following the scaling rules for delta functions.

G(r) =
−c
4πr

[δ (|r− r0|+ c(t− t0)) + δ (|r− r0| − c(t− t0))] (41)

These are called incoming and outgoing waves because the “location” of the delta function either advances
outward from the origin with time (corresponding to the r− ct argument) or shrinks in toward the origin as
time grows (corresponding to the r + ct argument). Also a delta function of the radial coordinate looks like
a “shell”, so the name fits quite well.
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