Alexander Miles
Written: December 19th, 2011
Last Edited: December 19, 2011

1 3D Helmholtz Equation

A Green's Function for the 3D Helmholtz equation must satisfy

$$
\nabla^{2} G\left(\mathbf{r}, \mathbf{r}_{0}\right)+k^{2} G\left(\mathbf{r}, \mathbf{r}_{0}\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right)
$$

By Fourier transforming both sides of this equation, we can show that we may take the Green's function to have the form

$$
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=g\left(\left|\mathbf{r}-\mathbf{r}_{0}\right|\right)
$$

and that

$$
g(r)=4 \pi \int_{0}^{\infty} \frac{\operatorname{sinc}(2 r \rho)}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \mathrm{~d} \rho
$$

First we take the Fourier transform of both sides:

$$
\begin{gather*}
\mathcal{F}\left(\nabla^{2} G\left(\mathbf{r}, \mathbf{r}_{0}\right)+k^{2} G\left(\mathbf{r}, \mathbf{r}_{0}\right)\right)=e^{2 \pi i \mathbf{r}_{\mathbf{o}} \rho} \tag{1}\\
(2 \pi i \rho)^{2} G\left(\rho, \rho_{0}\right)+k^{2} G\left(\rho, \rho_{0}\right)=e^{2 \pi i \mathbf{r}_{0} \rho} \tag{2}\\
G\left(\rho, \rho_{0}\right)\left[(2 \pi i \rho)^{2}+k^{2}\right]=e^{-2 \pi i \mathbf{r}_{0} \rho} \tag{3}\\
G\left(\rho, \rho_{0}\right)=\frac{e^{-2 \pi i \mathbf{r}_{0} \rho}}{(2 \pi i \rho)^{2}+k^{2}} \tag{4}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=\int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{e^{-2 \pi i \mathbf{r}_{0} \rho}}{(2 \pi i \rho)^{2}+k^{2}} e^{2 \pi i r \rho \cos \theta} \rho^{2} \sin \theta \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi \tag{5}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{0}^{\pi} \int_{0}^{\infty} \frac{e^{2 \pi i\left|r-r_{0}\right| \rho \cos \theta}}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \sin \theta \mathrm{~d} \rho \mathrm{~d} \theta \tag{6}\\
u=-\cos \theta \frac{\mathrm{d} u=\sin \theta \mathrm{d} \theta}{G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{-1}^{1} \int_{0}^{\infty} \frac{e^{-2 \pi i\left|r-r_{0}\right| \rho u}}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \mathrm{~d} \rho \mathrm{~d} u} \tag{7}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{0}^{\infty} \frac{\rho^{2}}{k^{2}-4 \pi^{2} \rho^{2}} \int_{-1}^{1} e^{-2 \pi i\left|r-r_{0}\right| \rho u} \mathrm{~d} u \mathrm{~d} \rho \tag{8}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{0}^{\infty} \frac{\rho^{2}}{k^{2}-4 \pi^{2} \rho^{2}}\left[\frac{1}{-2 \pi i\left|r-r_{0}\right| \rho}\left(e^{-2 \pi i\left|r-r_{0}\right| \rho}-e^{2 \pi i\left|r-r_{0}\right| \rho}\right)\right] \mathrm{d} \rho \tag{9}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{0}^{\infty} \frac{\rho^{2}}{k^{2}-4 \pi^{2} \rho^{2}}\left[\frac{2 i \sin \left(-2 \pi\left|r-r_{0}\right| \rho\right)}{-2 \pi i\left|r-r_{0}\right| \rho}\right] \mathrm{d} \rho \tag{10}
\end{gather*}
$$

$$
\begin{gather*}
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=2 \pi \int_{0}^{\infty} \frac{\rho^{2}}{k^{2}-4 \pi^{2} \rho^{2}}\left[\frac{\sin \left(-2 \pi\left|r-r_{0}\right| \rho\right)}{-\pi\left|r-r_{0}\right| \rho}\right] \mathrm{d} \rho \tag{12}\\
G\left(\mathbf{r}, \mathbf{r}_{0}\right)=4 \pi \int_{0}^{\infty} \frac{\rho^{2}}{k^{2}-4 \pi^{2} \rho^{2}} \operatorname{sinc}\left(-2 \pi\left|r-r_{0}\right| \rho\right) \mathrm{d} \rho \tag{13}
\end{gather*}
$$

This means that little g has the expected form:

$$
\begin{equation*}
g(r)=4 \pi \int_{0}^{\infty} \frac{\operatorname{sinc}(2 r \rho)}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \mathrm{~d} \rho \tag{14}
\end{equation*}
$$

However, this integral passes through a singularity of the integrand. If we use the Cauchy principal value to deal with this problem, we use contour integration we find that the solution is proportional to a spherical wave from a monochromatic point source.

$$
\begin{gather*}
\operatorname{Re}\left[\frac{e^{i k r}}{r}\right] \\
g(r)=4 \pi \int_{0}^{\infty} \frac{\operatorname{sinc}(2 r \rho)}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \mathrm{~d} \rho=4 \pi \int_{0}^{\infty} \frac{\sin (2 \pi r \rho)}{(2 \pi r \rho)\left(k^{2}-4 \pi^{2} \rho^{2}\right)} \rho^{2} \mathrm{~d} \rho \tag{15}\\
g(r)=2 \int_{0}^{\infty} \frac{\sin (2 \pi r \rho)}{r\left(k^{2}-4 \pi^{2} \rho^{2}\right)} \rho \mathrm{d} \rho \tag{16}
\end{gather*}
$$

We recognize that $\operatorname{sinc}(x)$ is an even function, so we can get the same result by integrating over infinite limits and halving the result.

$$
\begin{gather*}
g(r)=\int_{-\infty}^{\infty} \frac{\sin (2 \pi r \rho)}{r\left(k^{2}-4 \pi^{2} \rho^{2}\right)} \rho \mathrm{d} \rho \tag{17}\\
g(r)=\operatorname{Im}\left\{\int_{-\infty}^{\infty} \frac{e^{2 \pi i r \rho}}{r\left(k^{2}-4 \pi^{2} \rho^{2}\right)} \rho \mathrm{d} \rho\right\} \tag{18}
\end{gather*}
$$

Now let us focus on solving the integral, then we will take the imaginary part at the end. We recognize two poles at $\rho= \pm \frac{k}{2 \pi}$. We must cleverly re-phrase the denominator in order to clearly cancel with our additional factor.

$$
\begin{align*}
\operatorname{Res}_{k / 2 \pi} & =\left.\left(\rho-\frac{k}{2 \pi}\right) \frac{e^{2 \pi i r \rho}}{-4 \pi^{2} r\left(\rho-\frac{k}{2 \pi}\right)\left(\rho+\frac{k}{2 \pi}\right)} \rho\right|_{\rho=k /(2 \pi)} \\
& =\left.\frac{e^{2 \pi i r \rho}}{-4 \pi^{2} r\left(\rho+\frac{k}{2 \pi}\right)} \rho\right|_{\rho=k /(2 \pi)} \\
& =\frac{e^{i r k}}{-4 \pi^{2} r\left(\frac{k}{2 \pi}+\frac{k}{2 \pi}\right)} \frac{k}{2 \pi} \tag{19}\\
& =\frac{e^{i r k}}{-4 \pi r k} \frac{k}{2 \pi} \\
& =\frac{e^{i r k}}{-8 \pi^{2} r}
\end{align*}
$$

$$
\begin{align*}
\operatorname{Res}_{-k / 2 \pi} & =\left.\left(\rho+\frac{k}{2 \pi}\right) \frac{e^{2 \pi i r \rho}}{-4 \pi^{2} r\left(\rho-\frac{k}{2 \pi}\right)\left(\rho+\frac{k}{2 \pi}\right)} \rho\right|_{\rho=-k /(2 \pi)} \\
& =\left.\frac{e^{2 \pi i r \rho}}{-4 \pi^{2} r\left(\rho-\frac{k}{2 \pi}\right)} \rho\right|_{\rho=-k /(2 \pi)} \\
& =\frac{e^{-i r k}}{-4 \pi^{2} r\left(\frac{-k}{2 \pi}-\frac{k}{2 \pi}\right)} \frac{-k}{2 \pi} \tag{20}\\
& =\frac{e^{-i r k}}{4 \pi r k} \frac{-k}{2 \pi} \\
& =\frac{e^{-i r k}}{-8 \pi^{2} r}
\end{align*}
$$

Now we can utilize the residues, recognizing that since both lie on the line of integration, they have half the influence:

$$
\begin{gather*}
\int_{-\infty}^{\infty} \frac{e^{2 \pi i r \rho}}{r\left(k^{2}-4 \pi^{2} \rho^{2}\right)} \rho \mathrm{d} \rho=2 \pi i \sum_{i} \operatorname{Residue}_{i} \tag{21}\\
2 \pi i \sum_{i} \operatorname{Residue}_{i}=2 \pi i\left(\frac{1}{2} \frac{e^{i r k}}{-8 \pi^{2} r}+\frac{1}{2} \frac{e^{-i r k}}{-8 \pi^{2} r}\right)=i\left(\frac{e^{i r k}}{-8 \pi r}+\frac{e^{-i r k}}{-8 \pi r}\right) \tag{22}\\
2 \pi i \sum_{i} \operatorname{Residue}_{i}=\frac{i}{-8 \pi r}\left(e^{i r k}+e^{-i r k}\right)=\frac{i}{-8 \pi r}(\cos (k r)+i \sin (k r)+\cos (-k r)+i \sin (-k r)) \tag{23}\\
2 \pi i \sum_{i} \operatorname{Residue}_{i}=\frac{i}{-8 \pi r}(\cos (k r)+i \sin (k r)+\cos (k r)-i \sin (k r)) \tag{24}\\
2 \pi i \sum_{i} \operatorname{Residue}_{i}=\frac{i}{-8 \pi r}(\cos (k r)+\cos (k r))=\frac{i \cos (k r)}{-4 \pi r} \tag{25}
\end{gather*}
$$

Finally, we take the imaginary part in order to solve our original integral:

$$
\begin{gather*}
g(r)=4 \pi \int_{0}^{\infty} \frac{\operatorname{sinc}(2 r \rho)}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} \mathrm{~d} \rho=\frac{\cos (k r)}{-4 \pi r} \tag{26}\\
g(r)=\frac{\cos (k r)}{-4 \pi r} \tag{27}
\end{gather*}
$$

If we go ahead and plot the result of our operator acting upon this function, we do indeed find a delta function!

2 3D Wave Equation

A Green's function for the 3D wave equation must satisfy

$$
\nabla^{2} G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right) \delta\left(t-t_{0}\right)
$$

We utilize the space-time Fourier transform, defined as:

$$
F(\rho, \omega)=\int_{\mathbb{R}^{3}} \int_{-\infty}^{\infty} f(\mathbf{r}, t) e^{-2 \pi i(\mathbf{r} \cdot \rho-\omega t)} \mathrm{d} t \mathrm{~d}^{3} r
$$

Using this Fourier transform we can show that we may assume the Greens' function has the form:

$$
G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)=g\left(\left|\mathbf{r}-\mathbf{r}_{0}\right|, t-t_{0}\right)
$$

Instead of performing the whole Fourier transform at once, we instead perform just the time-dependent transform first.

$$
\begin{gather*}
\mathcal{F}_{t}\left(\nabla^{2} G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right) e^{2 \pi i t_{0} \omega} \tag{28}\\
\nabla^{2} G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)-\frac{1}{c^{2}}\left(-4 \pi^{2} t_{0}^{2}\right) G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right) e^{2 \pi i t_{0} \omega} \tag{29}\\
\left(\nabla^{2}+\frac{4 \pi^{2} \omega^{2}}{c^{2}}\right) G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right) e^{2 \pi i t_{0} \omega} \tag{30}
\end{gather*}
$$

If we make the substitution $k=\frac{2 \pi \omega}{c}$ we see that the wave equation is very similar to the Helmholtz equation we worked with in the previous section.

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G\left(\mathbf{r}, t, \mathbf{r}_{0}, t_{0}\right)=\delta\left(\mathbf{r}, \mathbf{r}_{0}\right) e^{2 \pi i\left(t-t_{0}\right) \omega} \tag{31}
\end{equation*}
$$

Because of this similarity, we can utilize the solution all the way up to the point where we are inversetransforming through the ω variable in the next portion of the question. We can use contour integration to show that $g(r, t)$ is a linear combination of an incoming wave

$$
\frac{c}{r} \delta(r+c t)
$$

and an outgoing wave

$$
\begin{gather*}
\frac{c}{r} \delta(r-c t) \\
g(r)=4 \pi \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{\operatorname{sinc}(2 r \rho)}{k^{2}-4 \pi^{2} \rho^{2}} \rho^{2} e^{2 \pi i t_{0} \omega} \mathrm{~d} \rho \mathrm{~d} \omega \tag{32}\\
g(r)=\int_{-\infty}^{\infty} \frac{-\cos (k r)}{4 \pi r} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega \tag{33}\\
g(r)=\int_{-\infty}^{\infty} \frac{-\cos (k r)}{4 \pi r} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega \tag{34}\\
g(r)=\frac{-1}{4 \pi r} \int_{-\infty}^{\infty} \frac{1}{2}\left(e^{i k r}+e^{-i k r}\right) e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega \tag{35}
\end{gather*}
$$

$$
\begin{gather*}
g(r)=\frac{-1}{8 \pi r}\left(\int_{-\infty}^{\infty} e^{i k r} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega+\int_{-\infty}^{\infty} e^{-i k r} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega\right) \tag{36}\\
g(r)=\frac{-1}{8 \pi r}\left(\int_{-\infty}^{\infty} e^{\frac{2 \pi i \omega r}{c}} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega+\int_{-\infty}^{\infty} e^{\frac{-2 \pi i \omega r}{c}} e^{2 \pi i t_{0} \omega} \mathrm{~d} \omega\right) \tag{37}\\
g(r)=\frac{-1}{8 \pi r}\left(\int_{-\infty}^{\infty} e^{2 \pi i \omega\left(\frac{r}{c}+t_{0}\right)} \mathrm{d} \omega+\int_{-\infty}^{\infty} e^{-2 \pi i \omega\left(\frac{r}{c}-t_{0}\right)} \mathrm{d} \omega\right) \tag{38}\\
g(r)=\frac{-1}{4 \pi r}\left[\delta\left(\frac{r}{c}+t_{0}\right)+\delta\left(\frac{r}{c}-t_{0}\right)\right] \tag{39}\\
G(r)=\frac{-1}{4 \pi r}\left[\delta\left(\frac{\left|\mathbf{r}-\mathbf{r}_{0}\right|}{c}+\left(t-t_{0}\right)\right)+\delta\left(\frac{\left|\mathbf{r}-\mathbf{r}_{0}\right|}{c}-\left(t-t_{0}\right)\right)\right] \tag{40}
\end{gather*}
$$

To get this to resemble the form alluded to in the question, we must multiply by a form of one, and following the scaling rules for delta functions.

$$
\begin{equation*}
G(r)=\frac{-c}{4 \pi r}\left[\delta\left(\left|\mathbf{r}-\mathbf{r}_{0}\right|+c\left(t-t_{0}\right)\right)+\delta\left(\left|\mathbf{r}-\mathbf{r}_{0}\right|-c\left(t-t_{0}\right)\right)\right] \tag{41}
\end{equation*}
$$

These are called incoming and outgoing waves because the "location" of the delta function either advances outward from the origin with time (corresponding to the $r-c t$ argument) or shrinks in toward the origin as time grows (corresponding to the $r+c t$ argument). Also a delta function of the radial coordinate looks like a "shell", so the name fits quite well.

