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1 3D Helmholtz Equation

A Green’s Function for the 3D Helmholtz equation must satisfy

VQG(r,rO) + kQG(r,ro) = d(r,ro)

By Fourier transforming both sides of this equation, we can show that we may take the Green’s function

to have the form

G(r,ro) = g(|r — o)
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First we take the Fourier transform of both sides:
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This means that little g has the expected form:
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However, this integral passes through a singularity of the integrand. If we use the Cauchy principal value
to deal with this problem, we use contour integration we find that the solution is proportional to a spherical
wave from a monochromatic point source.
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We recognize that sinc(x) is an even function, so we can get the same result by integrating over infinite
limits and halving the result.
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Now let us focus on solving the integral, then we will take the imaginary part at the end. We recognize
two poles at p = :I:%. We must cleverly re-phrase the denominator in order to clearly cancel with our
additional factor.
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Now we can utilize the residues, recognizing that since both lie on the line of integration, they have half

the influence:
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Finally, we take the imaginary part in order to solve our original integral:
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If we go ahead and plot the result of our operator acting upon this function, we do indeed find a delta

function!

2 3D Wave Equation

A Green’s function for the 3D wave equation must satisfy
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We utilize the space-time Fourier transform, defined as:
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Using this Fourier transform we can show that we may assume the Greens’ function has the form:

G(r,t,ro,to) = g(Jr — rol,t — to)

Instead of performing the whole Fourier transform at once, we instead perform just the time-dependent
transform first.
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If we make the substitution k = 2”7‘*’ we see that the wave equation is very similar to the Helmholtz
equation we worked with in the previous section.

(V2 + k%) G(r,t,10,t0) = 8(x, 1) (= 0)w (31)

Because of this similarity, we can utilize the solution all the way up to the point where we are inverse-
transforming through the w variable in the next portion of the question. We can use contour integration to
show that g(r,t) is a linear combination of an incoming wave
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To get this to resemble the form alluded to in the question, we must multiply by a form of one, and
following the scaling rules for delta functions.
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These are called incoming and outgoing waves because the “location” of the delta function either advances
outward from the origin with time (corresponding to the r — ¢t argument) or shrinks in toward the origin as
time grows (corresponding to the r + ¢t argument). Also a delta function of the radial coordinate looks like
a “shell”, so the name fits quite well.



