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Diffusion refers to the phenomenon of one species (compound, element, etc.) moving into and
through another in order to minimize some chemical potential gradient. This is clearly visible in
gases, where they expand to fill the available volume almost instantly, and mix very readily with
other gases. With gases in solids the process takes longer, and with solids diffusing into other
solids, even longer.

Fick’s first and second laws of diffusion are named for Adolf Eugen Fick, a German physiologist
who also invented contact lenses. The two laws describe solid state diffusion in one dimension,
such as the concentration of one species in another, given a specific amount of time. This can be
very useful, for example, for the case-hardening of steel. By diffusing carbon into steel via
diffusion, a hardened layer (maybe only a few micrometers thick) can be created without too
much trouble. Fick’s first law describes diffusion at steady state, this means the source
concentration never changes. Imagine having two chambers separated by a sheet of metal foil, one
with with a high concentration of some gas, the other with a very low concentration. The first law
would only apply if you were able to constantly supply additional more gas to the high
concentration side, and move it out of the low concentration side, as it diffused through the foil,
keeping both concentrations constant. The most significant impact of this situation, is that the
concentration gradient is constant and progress linearly from the high concentration on the high
side, to the low concentration on the low side.

Fick’s second law governs non-steady state diffusion, where the gas may not pass entirely through
the material, and the concentration gradient will not be linear.
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Fick’s First Law:

J = −D
(
∂C

∂x

)
(1)

J is flux, having units of mass per length squared per second. If one were to count the cars that
passed a specific point on the freeway, you’d get a flux of cars per square meter per second. For
this application, we usually use atoms per square meter per second. The D term represents the
ease with which the the species in question diffuses into another species, and it is also a function
of temperature. The partial derivative of concentration with respect to x represents how the
concentration changes with position within a material. In steady state problems this term
becomes a constant.

J = −D
(

∆C
∆x

)
(2)

Fick’s Second Law:

(
∂c

∂t

)
= D

(
∂2c

∂x2

)
(3)

This second order differential applies to non-steady state situations, where the concentration
cannot be considered to be infinite, or the material is so thick (more than a few millimeters) that
the concentration on the opposite side is no longer of interest on small time scales. There are two
specific solutions to this differential that are of interest, as they use boundary conditions
indicating the most common conditions. First is constant surface concentration (denoted Cs).

C(x, t)− C0

Cs − C0
= 1− erf

(
x

2
√
Dt

)
(4)

C0 is the preexisting concentration of the diffusing species, ideally zero, but clearly not for
applications like case-hardening steel with more carbon. erf is the error function, shown below.
It normalizes inputs between 0 and 2.8 to values between 0 and 1, and has many other
applications, and such can be called directly within some calculators and software packages.

erf(z) =
2√
π

∫ z

0
e−y2

dy (5)

The second significant solution to the differential represents a depleting source, as if you allowed
carbon to diffuse into steel for 10 hours, but did not provide additional carbon as it diffused into
the material. A consequence of this is that surface concentration is not constant, and that the
total amount of diffusing atoms cannot change. The term before the error function does exactly
this, ensuring that the area under the curve remains constant.

C(x, t)− C0 =
C0√
πDt

erf

(
x

2
√
Dt

)
(6)
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Temperature Dependence of D

The diffusion coefficient D depends upon temperature, as energy is required for atoms to shift
position. This movement has a specific activation energy (EA), usually in electron-volt per atom,
or joules per mole. D0, the pre-exponential, is an experimentally established value for different
material pairs (like Ni into Cu, or H into BCC Fe). Lastly, k is Boltzmann’s constant, which must
have units matching with the units of the activation energy.

D(t) = D0e
−EA
kT (7)
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Example

Suppose we have the situation mentioned above, wherein a piece of BCC iron foil, 0.001
inches thick, separates two chambers filled with hydrogen. On one side, the concentration
is 5 ∗ 108 atoms per cubic centimeter, and on the other side, 2 ∗ 103 atoms per cubic
centimeter. The system is allowed to reach steady state at 650 C. Find the concentration
gradient, and the flux through the foil. It is given that the standard state diffusion
pre-exponential is 0.0012 square centimeters per second, and the activation energy is 3600
calories per mole. Before we begin, we need to get everything into similar units. 0.001

Inches becomes 0.00254 centimeters. 650 degrees Celsius must be expressed as 923 Kelvin.
As it is stated that it has reached steady state, we can simply use Fick’s first law.

∂C

∂x
=

∆C

∆x
=

5 ∗ 108 − 2 ∗ 103

0.00254
(8)

∂C

∂x
= 1.968 ∗ 1011 (9)

To find the flux through the foil, we use the rest of Fick’s first law.

J = −D
(

∆C

∆x

)
(10)

J = −D ∗ 1.968 ∗ 1011 (11)

To find the diffusion coefficient, we need to make use of the temperature and the activation
energy. Note that we must also divide by Avagadro’s number to change calories per mole
into calories per atom, and we use the appropriate form of Boltzman’s constant.

D(t) = D0e
−EA
kT (12)

D(923K) = 0.0012 ∗ e
−3600

3.298∗10−24∗923∗6.023∗1023 (13)

D(923K) = 0.000168 (14)

Plugging both of these in, we find the flux, with units of atoms per centimeter squared
second.

J = −0.000168 ∗ 1.968 ∗ 1011 = 3.31 ∗ 107 (15)
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